CERES/Libera Joint Science Team Meeting -

An assessment of climate feedbacks in observations and climate models using different energy balance frameworks

Li-Wei Chao, Andrew Dessler

Department of Atmospheric Sciences, Texas A&M University

$$\Delta R = \Delta F + \lambda \Delta T_S$$

Net TOA flux

Forcing

Response

Warming, emit more radiation \uparrow Complex processes \rightarrow approximated by $\lambda \Delta T_S$

$$\Delta R = \Delta F + \lambda \Delta T_S$$

Net TOA flux Forcing Response

$$\Delta R = \Delta F + \lambda \Delta T_S$$

Net TOA flux

Forcing

Response

 ΔR : CERES EBAF ed4.1

 ΔF : IPCC AR5 forcing

 ΔT_S : ERA5 reanalysis

Time:

2000/03 - 2017/10

Compare CERES observations and CMIP6

to build confidence in the estimations from climate models

26 CMIP6 piControl runs For each model (~500 years):

Compare CERES observations and CMIP6

to build confidence in the estimations from climate models

$$\lambda = \lambda_{\text{Planck}} + \lambda_{\text{lapse rate}} + \lambda_{\Delta \text{RH}} + \lambda_{\text{Albedo}} + \lambda_{\text{Cloud}}$$

$$\lambda = \lambda_{\text{Planck}} + \lambda_{\text{lapse rate}} + \lambda_{\Delta \text{RH}} + \lambda_{\text{Albedo}} + \lambda_{\text{Cloud}}$$

$$\lambda = \lambda_{\text{Planck}} + \lambda_{\text{lapse rate}} + \lambda_{\Delta \text{RH}} + \lambda_{\text{Albedo}} + \lambda_{\text{Cloud}}$$

$$\lambda = \lambda_{\text{Planck}} + \lambda_{\text{lapse rate}} + \lambda_{\Delta \text{RH}} + \lambda_{\text{Albedo}} + \lambda_{\text{Cloud}}$$

$$\lambda = \lambda_{\text{Planck}} + \lambda_{\text{lapse rate}} + \lambda_{\Delta \text{RH}} + \lambda_{\text{Albedo}} + \lambda_{\text{Cloud}}$$

$$\lambda = \lambda_{\text{Planck}} + \lambda_{\text{lapse rate}} + \lambda_{\Delta \text{RH}} + \lambda_{\text{Albedo}} + \lambda_{\text{Cloud}}$$

- 1. Models could reproduce λ inferred from CERES (λ_{Total} : 52% of segments fall in observation)
- 2. Climate models have large range
- 3. The magnitudes of structural difference and unforced variability are comparable in total feedback

- 1. Models could reproduce λ inferred from CERES (λ_{Total} : 52% of segments fall in observation)
- 2. Climate models have large range
- 3. The magnitudes of structural difference and unforced variability are comparable in total feedback

 λ framework:

$$\Delta R = \Delta F + \lambda \Delta T_S$$

• Unforced variability has large influence on the magnitude of λ

 λ framework:

$$\Delta R = \Delta F + \lambda \Delta T_S$$

• Unforced variability has large influence on the magnitude of λ

2.0 -1.5 $- \Delta F (W m^{-2})$ 1.0 0.5 $= -0.57 \pm 0.52$ (5% - 95% -0.5confidence **∀** −1.0 intervals) -1.5-2.0-0.4-0.20.0 0.2 0.4 0.6 ΔT_S (K)

 θ framework: Dessler et al. (2018)

$$\Delta R = \Delta F + \theta \Delta T_{500}$$

Tropical (30°S-30°N) 500hPa temperature

 λ framework:

$$\Delta R = \Delta F + \lambda \Delta T_S$$

• Unforced variability has large influence on the magnitude of λ

 θ framework: Dessler et al. (2018)

$$\Delta R = \Delta F + \theta \Delta T_{500}$$

Tropical (30°S-30°N) 500hPa temperature

Observations

CMIP6, Ensemble Mean

→ CMIP6, Structural Difference

← CMIP6, Unforced Variability

→ CMIP6, Combined Uncertainty

 $\lambda \mid \theta$

Observations
CMIP6, Ensemble Mean
CMIP6, Structural Difference
CMIP6, Unforced Variability

CMIP6, Combined Uncertainty

- 1. CERES observations: the radiative flux is better correlated with 500hPa temperature (θ)
- 2. The impact of structural difference is similar
- 3. Unforced variability has less influence in θ

Observations

CMIP6, Ensemble Mean

→ CMIP6, Structural Difference

CMIP6, Unforced Variability

→ CMIP6, Combined Uncertainty

 $\lambda \mid \theta$

Observations
CMIP6, Ensemble Mean
CMIP6, Structural Difference
CMIP6, Unforced Variability
CMIP6, Combined Uncertainty

$$RSS_{\lambda} = \sqrt{\sum_{i} (\lambda_{i,obs} - \lambda_{i,model})^{2}} \quad i = Planck, lapse rate, \\ \Delta RH, albedo, cloud$$

$$RSS_{\lambda} = \sqrt{\sum_{i} (\lambda_{i,obs} - \lambda_{i,model})^{2}} \quad i = Planck, lapse rate, \\ \Delta RH, albedo, cloud$$

$$RSS_{\lambda} = \sqrt{\sum_{i} (\lambda_{i,obs} - \lambda_{i,model})^{2}}$$
 $i = Planck, lapse rate \Delta RH, albedo, cloud$

$$RSS_{\lambda} = \sqrt{\sum_{i} (\lambda_{i,obs} - \lambda_{i,model})^{2}}$$
 $i = Planck, lapse rate \Delta RH, albedo, cloud$

$$RSS_{\lambda} = \sqrt{\sum_{i} (\lambda_{i,obs} - \lambda_{i,model})^{2}}$$
 $i = Planck, lapse rate \Delta RH, albedo, cloud$

$$RSS_{\lambda} = \sqrt{\sum_{i} (\lambda_{i,obs} - \lambda_{i,model})^{2}}$$
 $i = Planck, lapse rate \Delta RH, albedo, cloud$

Conclusions

- No systematic disagreements between the feedbacks in the model ensembles and feedbacks inferred from observations
- The unforced variability has large influence on the magnitude of feedback
- θ framework yields more robust comparison in model performance:
 - (1) Less affected by unforced variability
 - (2) Smaller uncertainty in the observations
 - → Better way to test the models